Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.

Identifieur interne : 000699 ( Main/Exploration ); précédent : 000698; suivant : 000700

Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.

Auteurs : Zachary D. Parsons [États-Unis] ; Kent S. Gates

Source :

RBID : pubmed:23957891

Descripteurs français

English descriptors

Abstract

Protein tyrosine phosphatases (PTPs) play an important role in the regulation of mammalian signal transduction. During some cell signaling processes, the generation of endogenous hydrogen peroxide inactivates selected PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low-molecular weight and protein thiols in the cell have the potential to regenerate the catalytically active PTPs. Here we examined the recovery of catalytic activity from two oxidatively inactivated PTPs (PTP1B and SHP-2) by various low-molecular weight thiols and the enzyme thioredoxin. All monothiols examined regenerated the catalytic activity of oxidized PTP1B, with apparent rate constants that varied by a factor of approximately 8. In general, molecules bearing low-pKa thiol groups were particularly effective. The biological thiol glutathione repaired oxidized PTP1B with an apparent second-order rate constant of 0.023 ± 0.004 M(-1) s(-1), while the dithiol dithiothreitol (DTT) displayed an apparent second-order rate constant of 0.325 ± 0.007 M(-1) s(-1). The enzyme thioredoxin regenerated the catalytic activity of oxidized PTP1B at a substantially faster rate than DTT. Thioredoxin (2 μM) converted oxidized PTP1B to the active form with an observed rate constant of 1.4 × 10(-3) s(-1). The rates at which these agents regenerated oxidized PTP1B followed the order Trx > DTT > GSHand comparable values observed at 2 μM Trx, 4 mM DTT, and 60 mM GSH. Various disulfides that are byproducts of the reactivation process did not inactivate native PTP1B at concentrations of 1-20 mM. The common biochemical reducing agent tris(2-carboxyethyl)phosphine regenerates enzymatic activity from oxidized PTP1B somewhat faster than the thiol-based reagents, with a rate constant of 1.5 ± 0.5 M(-1) s(-1). We observed profound kinetic differences between the thiol-dependent regeneration of activity from oxidized PTP1B and SHP-2, highlighting the potential for structural differences in various oxidized PTPs to play a significant role in the rates at which low-molecular weight thiols and thiol-containing enzymes such as thioredoxin and glutaredoxin return catalytic activity to these enzymes during cell signaling events.

DOI: 10.1021/bi400451m
PubMed: 23957891
PubMed Central: PMC4006132


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.</title>
<author>
<name sortKey="Parsons, Zachary D" sort="Parsons, Zachary D" uniqKey="Parsons Z" first="Zachary D" last="Parsons">Zachary D. Parsons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211</wicri:regionArea>
<wicri:noRegion>Missouri 65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gates, Kent S" sort="Gates, Kent S" uniqKey="Gates K" first="Kent S" last="Gates">Kent S. Gates</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23957891</idno>
<idno type="pmid">23957891</idno>
<idno type="doi">10.1021/bi400451m</idno>
<idno type="pmc">PMC4006132</idno>
<idno type="wicri:Area/Main/Corpus">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000711</idno>
<idno type="wicri:Area/Main/Curation">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000711</idno>
<idno type="wicri:Area/Main/Exploration">000711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.</title>
<author>
<name sortKey="Parsons, Zachary D" sort="Parsons, Zachary D" uniqKey="Parsons Z" first="Zachary D" last="Parsons">Zachary D. Parsons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211</wicri:regionArea>
<wicri:noRegion>Missouri 65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gates, Kent S" sort="Gates, Kent S" uniqKey="Gates K" first="Kent S" last="Gates">Kent S. Gates</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic Domain (MeSH)</term>
<term>Disulfides (chemistry)</term>
<term>Dithiothreitol (chemistry)</term>
<term>Enzyme Reactivators (pharmacology)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen Peroxide (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phosphines (chemistry)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1 (antagonists & inhibitors)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1 (chemistry)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11 (antagonists & inhibitors)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11 (chemistry)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Disulfures (composition chimique)</term>
<term>Dithiothréitol (composition chimique)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (composition chimique)</term>
<term>Phosphines (composition chimique)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1 (antagonistes et inhibiteurs)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1 (composition chimique)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11 (antagonistes et inhibiteurs)</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11 (composition chimique)</term>
<term>Réactivateurs d'enzymes (pharmacologie)</term>
<term>Thiols (composition chimique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Disulfides</term>
<term>Dithiothreitol</term>
<term>Hydrogen Peroxide</term>
<term>Phosphines</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Reactivators</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfures</term>
<term>Dithiothréitol</term>
<term>Peroxyde d'hydrogène</term>
<term>Phosphines</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 1</term>
<term>Protein Tyrosine Phosphatase, Non-Receptor Type 11</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Réactivateurs d'enzymes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Oxidation-Reduction</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaine catalytique</term>
<term>Oxydoréduction</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protein tyrosine phosphatases (PTPs) play an important role in the regulation of mammalian signal transduction. During some cell signaling processes, the generation of endogenous hydrogen peroxide inactivates selected PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low-molecular weight and protein thiols in the cell have the potential to regenerate the catalytically active PTPs. Here we examined the recovery of catalytic activity from two oxidatively inactivated PTPs (PTP1B and SHP-2) by various low-molecular weight thiols and the enzyme thioredoxin. All monothiols examined regenerated the catalytic activity of oxidized PTP1B, with apparent rate constants that varied by a factor of approximately 8. In general, molecules bearing low-pKa thiol groups were particularly effective. The biological thiol glutathione repaired oxidized PTP1B with an apparent second-order rate constant of 0.023 ± 0.004 M(-1) s(-1), while the dithiol dithiothreitol (DTT) displayed an apparent second-order rate constant of 0.325 ± 0.007 M(-1) s(-1). The enzyme thioredoxin regenerated the catalytic activity of oxidized PTP1B at a substantially faster rate than DTT. Thioredoxin (2 μM) converted oxidized PTP1B to the active form with an observed rate constant of 1.4 × 10(-3) s(-1). The rates at which these agents regenerated oxidized PTP1B followed the order Trx > DTT > GSHand comparable values observed at 2 μM Trx, 4 mM DTT, and 60 mM GSH. Various disulfides that are byproducts of the reactivation process did not inactivate native PTP1B at concentrations of 1-20 mM. The common biochemical reducing agent tris(2-carboxyethyl)phosphine regenerates enzymatic activity from oxidized PTP1B somewhat faster than the thiol-based reagents, with a rate constant of 1.5 ± 0.5 M(-1) s(-1). We observed profound kinetic differences between the thiol-dependent regeneration of activity from oxidized PTP1B and SHP-2, highlighting the potential for structural differences in various oxidized PTPs to play a significant role in the rates at which low-molecular weight thiols and thiol-containing enzymes such as thioredoxin and glutaredoxin return catalytic activity to these enzymes during cell signaling events. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23957891</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>37</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.</ArticleTitle>
<Pagination>
<MedlinePgn>6412-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi400451m</ELocationID>
<Abstract>
<AbstractText>Protein tyrosine phosphatases (PTPs) play an important role in the regulation of mammalian signal transduction. During some cell signaling processes, the generation of endogenous hydrogen peroxide inactivates selected PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low-molecular weight and protein thiols in the cell have the potential to regenerate the catalytically active PTPs. Here we examined the recovery of catalytic activity from two oxidatively inactivated PTPs (PTP1B and SHP-2) by various low-molecular weight thiols and the enzyme thioredoxin. All monothiols examined regenerated the catalytic activity of oxidized PTP1B, with apparent rate constants that varied by a factor of approximately 8. In general, molecules bearing low-pKa thiol groups were particularly effective. The biological thiol glutathione repaired oxidized PTP1B with an apparent second-order rate constant of 0.023 ± 0.004 M(-1) s(-1), while the dithiol dithiothreitol (DTT) displayed an apparent second-order rate constant of 0.325 ± 0.007 M(-1) s(-1). The enzyme thioredoxin regenerated the catalytic activity of oxidized PTP1B at a substantially faster rate than DTT. Thioredoxin (2 μM) converted oxidized PTP1B to the active form with an observed rate constant of 1.4 × 10(-3) s(-1). The rates at which these agents regenerated oxidized PTP1B followed the order Trx > DTT > GSHand comparable values observed at 2 μM Trx, 4 mM DTT, and 60 mM GSH. Various disulfides that are byproducts of the reactivation process did not inactivate native PTP1B at concentrations of 1-20 mM. The common biochemical reducing agent tris(2-carboxyethyl)phosphine regenerates enzymatic activity from oxidized PTP1B somewhat faster than the thiol-based reagents, with a rate constant of 1.5 ± 0.5 M(-1) s(-1). We observed profound kinetic differences between the thiol-dependent regeneration of activity from oxidized PTP1B and SHP-2, highlighting the potential for structural differences in various oxidized PTPs to play a significant role in the rates at which low-molecular weight thiols and thiol-containing enzymes such as thioredoxin and glutaredoxin return catalytic activity to these enzymes during cell signaling events. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Parsons</LastName>
<ForeName>Zachary D</ForeName>
<Initials>ZD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gates</LastName>
<ForeName>Kent S</ForeName>
<Initials>KS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 AT006273</GrantID>
<Acronym>AT</Acronym>
<Agency>NCCIH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA 100757</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA119131</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50AT006273</GrantID>
<Acronym>AT</Acronym>
<Agency>NCCIH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA100757</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004793">Enzyme Reactivators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010720">Phosphines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>22OAC2MO2S</RegistryNumber>
<NameOfSubstance UI="C080938">tris(2-carboxyethyl)phosphine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="C516607">PTPN1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="D054562">Protein Tyrosine Phosphatase, Non-Receptor Type 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="D054592">Protein Tyrosine Phosphatase, Non-Receptor Type 11</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T8ID5YZU6Y</RegistryNumber>
<NameOfSubstance UI="D004229">Dithiothreitol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004229" MajorTopicYN="N">Dithiothreitol</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004793" MajorTopicYN="N">Enzyme Reactivators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010720" MajorTopicYN="N">Phosphines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054562" MajorTopicYN="N">Protein Tyrosine Phosphatase, Non-Receptor Type 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054592" MajorTopicYN="N">Protein Tyrosine Phosphatase, Non-Receptor Type 11</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23957891</ArticleId>
<ArticleId IdType="doi">10.1021/bi400451m</ArticleId>
<ArticleId IdType="pmc">PMC4006132</ArticleId>
<ArticleId IdType="mid">NIHMS520057</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:797-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19489734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 May 15;263(14):6722-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2834386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2011 Oct;150(4):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jun 25;141(7):1117-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20602996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2013;528:129-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 1996 Oct 18;61(21):7391-7397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11667665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Mar;24(5):1844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1999 Aug 15;273(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2010 Jan 15;20(2):444-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 19;140(4):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Nov;7(11):833-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2009 Jan 1;19(1):218-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):773-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 9;273(41):26368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9756867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Aug 10;127(31):10830-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jul 1;41(1):86-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Oct 30;188(2):773-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1445322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 24;281(8):5258-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jan 7;100(1):113-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15366-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Jul 1;43(1):100-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2002 Sep 26;45(20):4443-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12238924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Nov 15;179(10):6456-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17982034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2007 Apr 26;9(9):1715-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17408277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2010;50:215-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20055703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 May 2;129(17):5320-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17411049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):77-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20919935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 2011 Oct;41(5):399-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21728078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Oct 12;133(40):15803-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21913686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1998 Aug 1;261(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9716416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1973 Jul 17;12(15):2940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4737014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Sep 19;272(38):23552-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Dec 7;43(48):15195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37716-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2011 Mar;63(1):218-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Apr 21;37(16):5633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9548949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jul 1;66(13):6800-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6246487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gates, Kent S" sort="Gates, Kent S" uniqKey="Gates K" first="Kent S" last="Gates">Kent S. Gates</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Parsons, Zachary D" sort="Parsons, Zachary D" uniqKey="Parsons Z" first="Zachary D" last="Parsons">Zachary D. Parsons</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000699 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000699 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23957891
   |texte=   Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23957891" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020